

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

INFORMATIONS & IDEES RECUES SUR LES ENERGIES RENOUVELABLES :

BOIS

EOLIEN

METHANISATION

PHOTOVOLTAIQUE

GEOTHERMIE

RESEAUX DE CHALEUR

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] -SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

Le bois énergie, comment ça marche?

Une chaufferie bois est une installation permettant de produire de la chaleur et/ou de l'électricité (cogénération simultanée de chaleur et d'électricité) à partir d'un combustible bois.

Part du bois énergie dans la consommation d'énergie primaire renouvelable (2021)

Consommation d'énergie primaire de bois énergie (2021)

Part du bois énergie dans la consommation de chaleur renouvelable (2021)

Émissions de CO₂ (plaquette forestière)

12,3 g CO₂/kWh PCI

Coût du MWh produit¹

60 - 96 € HT/MWh (installations < 1 MW)

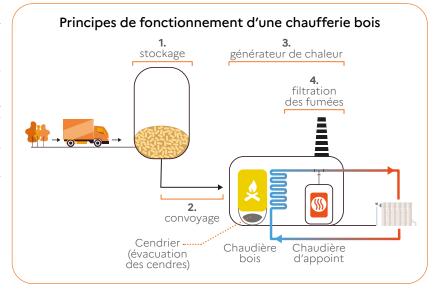
51 - 89 € HT/MWh (installations > 1 MW)

.

Objectifs de production

visés par la Planification Pluriannuelle de l'Énergie (PPE) à horizon 2028 :

157 à 169 TWh


pour la production de chaleur biomasse solide

- 1. Coûts de revient pour une chaufferie biomasse (voir en page 4 pour le chauffage domestique au bois).
- 2. ADEME : Étude marchés et emplois 2. ADEME : EUGE Marches et emplos concourant à la transition énergé-tique dans le secteur des énergies renouvelables et de récupération -09/2022.

Une chaufferie bois est une installation permettant de produire de la chaleur et/ou de l'électricité en cogénération à partir d'un combustible bois. Le bois utilisé est généralement un coproduit de l'exploitation de bois valorisé en bois d'œuvre :

- Les plaquettes forestières et assimilées (combustibles obtenus par broyage ou déchiquetage de tout ou partie de végétaux ligneux issus de peuplements forestiers, de plantations ou de haies, n'ayant subi aucune transformation);
- Les connexes et sous-produits de l'industrie de première transformation (écorces, sciures, copeaux, plaquettes et broyats);
- Les bois en fin de vie et bois déchets (bois d'emballage, ameublement en fin de vie, etc.);
- Les granulés bois produits à partir de matières premières sèches et broyées, et issus de matières ligneuses ou de bois usagés.

La chaleur produite permet de répondre aux besoins de chauffage de bâtiments (chaufferie associée ou non à un réseau de chaleur) ou à des process industriels (eau chaude, vapeur, air chaud).

Enjeux et perspectives

Avec 35,1 % de la consommation d'énergie primaire renouvelable en 2021, le bois énergie¹ est la première énergie renouvelable de France. À ce titre, il a un rôle majeur à jouer dans la transition énergétique, en particulier pour la production de chaleur.

Plus de 41 % de la consommation finale d'énergie en 2021 est en effet liée à la production de chaleur. Or, cette chaleur reste majoritairement produite à partir d'énergie fossile importée (gaz, fioul). La produire à partir d'énergie renouvelable - chez les particuliers, chez les industriels ou pour alimenter des réseaux de chaleur urbains - permet de relocaliser la production d'énergie tout en valorisant des ressources renouvelables et locales.

Dans le secteur collectif/tertiaire, ce développement du bois énergie passe par le développement de réseaux de chaleur. Ces derniers sont en effet indispensables pour mobiliser massivement des gisements locaux d'énergie renouvelable et de récupération qui ne seraient pas distribuables autrement. Dans l'industrie, l'enjeu est le remplacement de chaudières alimentées en énergies fossiles par des chaudières biomasse.

Au-delà de la production de chaleur, le bois énergie permet la production d'électricité renouvelable à travers les unités de cogénération. Néanmoins, pour optimiser la valorisation de la biomasse et maintenir un haut rendement énergétique, la Planification Pluriannuelle de l'Énergie privilégie un usage en chaleur plutôt qu'en production d'électricité.

La filière bois énergie est une énergie renouvelable mature soutenue par des technologies performantes dont des chaudières biomasse à haut rendement énergétique. Elle présente à ce titre plusieurs bénéfices environnementaux et énergétiques.

Au niveau macro-économique, la filière contribue à l'indépendance énergétique et à l'amélioration de la balance commerciale de la France via la baisse des importations d'énergies fossiles. Elle contribue également à structurer la filière amont (production de combustible). Elle permet aux décideurs locaux de prendre en main la question de l'approvisionnement énergétique de leur territoire, d'opter pour le mode de gouvernance et de gestion de production d'énergie les mieux adaptés et de constituer de véritables outils des politiques d'aménagement du territoire dans lesquelles ils s'intègrent : Plan Climat Air Énergie (PCAET), Plan Local d'Urbanisme intercommunal et Habitat (PLUIH), etc.

^{1.} La biomasse solide regroupe le bois énergie, les déchets renouvelables incinérés et les résidus agricoles et agroalimentaires (également incinérés et incluant la bagasse - résidu ligneux de la canne à sucre). La biomasse au sens large comprend également le biogaz et les biocarburants. Le bois énergie comprend le bois-bûche (commercialisé ou autoconsommé) ainsi que tous les coproduits du bois destinés à produire de l'énergie : liqueur noire, écorce, sciure, plaquettes forestières et plaquettes d'industrie, briquettes reconstituées et granulés, broyats de déchets industriels banals, bois en fin de vie, etc.

Quel intérêt pour mon territoire?

EMPLOIS LOCAUX

La filière bois énergie contribue à l'économie locale, notamment au travers de l'exploitation forestière, du transport des matières et de l'exploitation des installations. On estime à près de 26 000 le nombre d'équivalents temps plein créés par la filière.

ÉQUITÉ SOCIALE

Un réseau de chaleur alimenté par du bois énergie permet de fournir une chaleur « bon marché » notamment aux logements sociaux, de renforcer la solidarité inter-quartier et de lutter contre la précarité énergétique (coûts de la chaleur stable dans le temps, contrairement à la volatilité du fossile, TVA réduite dans le cas des réseaux de chaleur).

ÉNERGIE LOCALE

Contrairement aux énergies fossiles, le bois énergie est principalement produit en France. Alors que les énergies fossiles sont importées du Moyen-Orient, d'Afrique et de Russie, le combustible bois provient généralement d'une source proche du lieu de consommation (parcelle forestière ou bocagère de la ré-

idées reçues et sujets de débat

DISPONIBILITÉ DE LA RESSOURCE :

Les objectifs nationaux de développement du bois énergie ont été fixés pour que le taux de prélèvement reste en deçà de l'accroissement des forêts. De fait, la superficie forestière métropolitaine continue à progresser de 0,7 % par an depuis 1980.

Avec 16,9 millions d'hectares, la forêts française couvre 31 % du territoire tandis que le volume de bois prélevé s'élève à 52 millions de m³ par an, soit en moyenne 60 % de l'accroissement biologique net des forêts nationales sur la période 2009-2017.

CONTRIBUTION DU BOIS ÉNERGIE À L'ATTÉ-**NUATION DU CHANGEMENT CLIMATIQUE:**

La filière bois énergie et l'entretien des forêts sont nécessaires à l'atteinte des objectifs de neutralité carbone d'ici 2050. Ils remplacent pour partie les autres ressources fossiles qui sont plus émettrices de gaz à effet de serre

QUALITÉ DE L'AIR:

Le bois énergie représente 28 % des émissions nationales de particules PM₁₀, 45 % des émissions de PM₂₅ et 4 % des émissions de NOx². Ces émissions de polluants atmosphériques sont principalement dues à l'utilisation d'appareils domestiques anciens peu performants.

Que puis-je faire en tant qu'élu.e?

ACCUEILLIR...

Favoriser l'émergence de projets locaux en créant des conditions favorables : programmation, planification, animation, concertation avec les citoyens et relais d'information.

MOBILISER...

Porter des projets bois énergie à la fois sur le patrimoine de la commune, et en tant qu'autorité organisatrice du service public de distribution de la chaleur.

S'ENTOURER...

Bien s'entourer: Relais Bois Énergie, ADEME, AMO, Bureau d'études...

SE RENSEIGNER...

Retours d'expérience auprès d'autres collectivités et entreprises.

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] - SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

L'éolien terrestre, comment ça marche?

Une éolienne transforme l'énergie mécanique du vent en électricité grâce à un générateur situé dans le rotor.

Capacité installée

(au 31/12/2022)

20,4 GW répartis en plus de 9 000 éoliennes

Objectifs de capacité

(Planification Pluriannuelle de l'Énergie - PPE pour la métropole à horizon 2028)

33,2 à 34,7 GW,

soit 30 % de la puissance totale installée en énergie renouvelable électrique à cette date.

Émissions de CO₂

12,7 g CO₂/kW (sur le cycle de vie)

93 %

du poids est totalement recyclable (acier, béton, cuivre et aluminium)

Coût du MWh produit

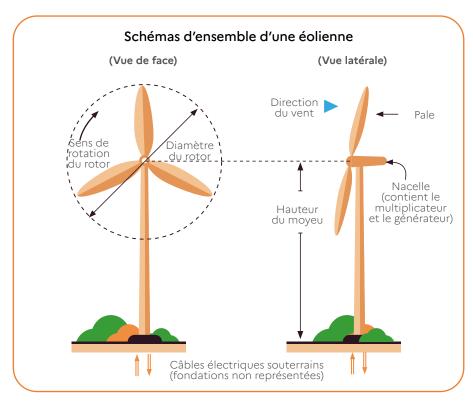
pendant 20 ans (coût complet moyen en 2022)

Inférieur à 55 €/MWh

(coût complet à horizon 2030)

0,12 à 0,19 ha/MW

(surface artificialisée)



12 700 ETP directs

Les pales d'une éolienne captent la force du vent. Elles font tourner un axe - le rotor - qui se positionne toujours face au vent, à la vitesse de 10 à 25 tours par minute. L'énergie mécanique ainsi créée est transformée en énergie électrique par un générateur situé à l'intérieur de l'éolienne. Cette électricité est ensuite injectée dans le réseau électrique.

Une éolienne se caractérise par sa puissance nominale. En France, la plupart des éoliennes terrestres installées ont une puissance unitaire de 2 à 4,5 MW, pour un diamètre de rotor compris entre 75 et 150 m et une hauteur totale comprise entre 100 et 200 m.

Enjeux et perspectives

La filière éolienne constitue la seconde source de production d'électricité d'origine renouvelable en France (après l'hydraulique). Le taux de couverture moyen de la consommation électrique par la production éolienne est ainsi de 8,3 % en 2022.

Une majorité des projets sont mis en œuvre par des développeurs qui portent l'ensemble des étapes de réalisation d'un parc. Un projet éolien peut également être développé à l'initiative des citoyens et de la collectivité. Lors d'un portage conjoint entre développeur privé et collectif de citoyens et/ou collectivité, on parle de co-développement.

L'essor de la filière éolienne date du début des années 2000. Les premiers projets arrivant aujourd'hui au terme de leur durée d'exploitation, les exploitants peuvent alors mettre en œuvre du « repowering » (renouvellement des parcs éoliens). Cette opération consiste à remplacer les éoliennes existantes par des éoliennes plus récentes, qui peuvent être plus hautes et plus puissantes si la réglementation le permet. Le « repowering » est une opportunité qui permet de reconfigurer et optimiser un parc, en utilisant une infrastructure déjà intégrée dans le territoire.

COÛTS:

L'éolien terrestre en France est l'une des sources de production d'électricité aux coûts complets de production les plus faibles avec à 66 €/MWh en 2022, coûts de raccordement compris.

« TEMPS DE RETOUR ÉNERGÉTIQUE » :

Outre un contenu carbone faible, l'éolien terrestre a l'un des temps de retour énergétique parmi les plus courts. L'énergie nécessaire à la construction, l'exploitation et le démantèlement d'une éolienne est compensée par sa production d'électricité en 12 mois seulement.

VARIABILITÉ DE PRODUCTION:

En France, une éolienne tourne en moyenne entre 75 % et 95 % du temps : un ratio non négligeable. Le facteur de charge moyen (rapport entre la puissance moyenne effectivement délivrée et la puissance nominale installée) est de 23,5 %.

BRUIT:

Les éoliennes émettent un bruit de fond en basses fréquences (20 Hz à 100 Hz) en raison des vibrations mécaniques entre les composants de l'éolienne et du souffle du vent dans les pales. À 500 m (distance minimale entre une éolienne et une habitation), ce bruit est généralement inférieur à 35 décibels, soit celui d'une conversation à voix basse.

Les émissions sonores des éoliennes sont réglementées et contrôlées afin d'éviter toute nuisance à proximité des parcs : la réglementation prévoit des campagnes de mesure de bruit et autorise l'obligation de bridage en cas de dépassement.

BIODIVERSITÉ:

Les développeurs de projets sont tenus, lors de la définition de leur projet, de respecter la séquence « ERC » :

- « Éviter » au maximum les impacts (évitement des zones les plus impactantes);
- « Réduire » ceux qui ne peuvent être évités (hauteurs de garde au sol suffisantes et bridage des machines);
- « Compenser » les impacts résiduels (mesures dépendant des espèces et habitats concernés);

Il est également possible de moduler le fonctionnement des éoliennes lors des périodes de passages de certaines espèces (chiroptères, oiseaux migrateurs, etc.).

USAGE DES SOLS:

L'éolien terrestre n'entre pas en concurrence avec les activités agricoles. Les seules surfaces réservées ne permettant pas d'autre usage des sols se limitent aux fondations et aux aires de servitude (chemins d'accès, etc.).

PAYSAGES:

Comme toute installation industrielle, l'éolien impacte le paysage. C'est pour y répondre que l'étude d'impacts comprend systématiquement un volet relatif aux paysages. Sur ce sujet, il convient de veiller à la cohérence de l'échelle paysagère utilisée (commune, EPCI, Parc Naturel Régional, etc.) pour évaluer l'intégration du projet. L'enquête publique réalisée dans le cadre du développement des parcs est l'occasion de recueillir les avis des riverains sur ce sujet.

SANTÉ HUMAINE ET ANIMALE:

Les récents rapports de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) ne montrent « aucun dépassement des seuils d'audibilité (humaine) dans les domaines des infrasons et basses fréquences sonores ». Dans deux élevages étudiés, il précise qu'il est « hautement improbable voire exclu que la mise en place des éoliennes ait conduit à générer les troubles objectivés (mammites, qualité du lait, baisse de production de lait, troubles de reproduction dans les deux élevages, mortalités) ».

L'ANSES recommande de mener des études complémentaires, notamment épidémiologiques, pour éclairer davantage le débat.

VALEUR FONCIÈRE:

L'impact d'une éolienne sur la valeur foncière est comparable à celui d'autres infrastructures industrielles (pylônes électriques, antennes relais...). Une étude ADEME portant sur 1,5 million de transactions immobilières (2015-2020) montre une baisse des prix fonciers de -1,5 % dans un rayon de 5 km autour d'une éolienne, et aucun effet au-delà.

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] -SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

La méthanisation, comment ça marche?

Le processus de méthanisation permet de produire un biogaz à partir de la fermentation de déjections d'animaux d'élevage, de sous-produits et résidus de cultures, de biodéchets, etc. Ce gaz est ensuite utilisé pour produire de l'énergie sous forme de biométhane, d'électricité, de chaleur ou encore de biocarburant pour faire fonctionner des véhicules.

oduction 2021 de biogaz

11 TWh

soit 4,4 % du mix de production d'énergies d'origines renouvelables.

Objectif de la Planification Pluriannuelle de l'Énergie (PPE) pour la métropole à horizon 2028 (consommation finale de biogaz) :

24 à 32 TWh / an

Émissions de CO₂

23 - 44 g eqCO₂/kWh

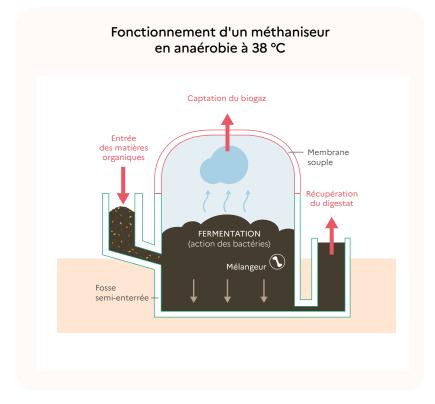
Coût du MWh de biométhane produit

60 - 80 € HT/MWh (objectif PPE à horizon 2028)

1,1 ha en cogénération

2,2 ha pour l'injection

ETP directs (2020)


La méthanisation est un processus de production de biogaz par fermentation de matière organique en l'absence d'oxygène (anaérobie) et sous l'effet de la chaleur¹. C'est une source d'énergie non-continue et stockable.

Le biogaz produit peut être valorisé de nombreuses manières, sur ou hors des exploitations :

- En biométhane injecté dans le réseau après purification ;
- Par cogénération : production simultanée de chaleur et d'électricité;
- Par production de chaleur seule ;
- Par production de biocarburant bioGNV.

Il existe plusieurs types d'installations :

- Les installations à la ferme, qui représentent 68 % du parc. Elles permettent le traitement des effluents d'élevage, des déchets agricoles voire de biodéchets, ainsi qu'une diversification des activités des exploitations en produisant de l'énergie (électricité ou biométhane);
- Les installations centralisées, qui en plus de la production énergétique - assurent le traitement des déchets organiques du territoire : biodéchets de la collectivité, déchets agricoles, déchets industriels...;

- Les industries agroalimentaires qui traitent leurs propres effluents organiques pour autoconsommer le biogaz produit en chaleur dans leur process industriel;
- Les stations d'épuration urbaines qui choisissent la méthanisation pour réduire la charge organique et le volume des boues. Le biogaz produit y est souvent autoconsommé mais les plus grandes unités optent de plus en plus souvent pour l'injection du biométhane produit ;
- Enfin, certaines collectivités développent un modèle de méthanisation 100 % biodéchets des citoyens, sous réserve d'un gisement suffisant.

^{1.} https://librairie.ademe.fr/cadic/6475/guide-pratique-methanisation-en-10-questions.pdf

Enjeux et perspectives

La méthanisation est une énergie renouvelable dont le fonctionnement en économie circulaire est particulièrement lisible. Elle repose sur le traitement biologique d'une ressource locale, une valorisation énergétique locale et un retour au sol des digestats (résidus, ou déchets « digérés » après méthanisation des déchets organiques). Ces derniers peuvent être utilisés comme fertilisants en remplacement d'engrais minéraux. La méthanisation est ainsi un atout pour les territoires en réponse à leurs besoins tant énergétiques qu'agronomiques.

Elle est aussi la seule énergie renouvelable à avoir atteint ses objectifs PPE en 2022.

Dans les scénarios *Transitions 2050* de l'ADEME, la méthanisation pourrait injecter jusqu'à 110 TWh /an dans les réseaux et assurer ainsi 70 % du niveau de consommation de gaz, sous condition d'une réduction de la consomma-

tion globale de gaz¹. Dans ce cadre, les gisements agricoles seraient à l'origine de 90 % du biogaz produit.

La majorité des projets mis en service ces dernières années ont d'ailleurs choisi de valoriser le biogaz produit en l'injectant sous forme de biométhane dans le réseau de gaz. La faisabilité économique des projets repose notamment sur les tarifs d'achat du biométhane, garantis par l'État sur une durée de 15 ans. Mais d'autres modèles alternatifs de contrats émergent, avec une mise en relation directe d'un producteur et d'un consommateur d'énergie.

Toutefois, la cogénération reste intéressante dès lors qu'il est possible de valoriser efficacement la chaleur produite. L'équilibre économique du projet peut alors être complété avec des aides à l'investissement, des prêts bancaires ou des financements participatifs.

^{1.} Transitions 2050: https://www.ademe.fr/les-futurs-en-transition/

ÉNERGIE LOCALE & USAGES MULTIPLES

La production locale d'énergie renforce l'autonomie et la résilience énergétique du territoire. La méthanisation permet également de valoriser les déchets du territoire grâce au retour au sol du digestat, ce qui diminue également la consommation d'engrais minéraux sur le territoire.

EMPLOIS LOCAUX

La méthanisation maintient des emplois non-délocalisables par la diversification des activités agricoles, la gestion de l'installation ainsi que la valorisation des déchets et de l'énergie.

ÉQUITÉ SOCIALE

La méthanisation permet une production d'énergie non-intermittente, et pour laquelle le coût de production reste stable (contrairement aux énergies fossiles).

Idées reçues et sujets de débat

CONCURRENCE AVEC L'ALIMENTATION:

En France, l'utilisation en méthanisation de cultures principales est plafonnée à 15 % sur le plan réglementaire. La priorité est donnée aux effluents d'élevages, aux déchets et résidus agricoles et aux biodéchets.

ODEURS:

Le procédé de méthanisation produit peu d'odeurs en lui-même. Comme pour toute installation de traitement des déchets, l'attention doit être portée sur le transport et la manipulation, opérations émettrices d'odeurs.

TRAFIC ROUTIER:

L'installation d'un site de méthanisation implique le plus souvent une augmentation du trafic limitée en moyenne à 1 ou 2 passages de camions par jour. Le choix de la zone et du dimensionnement de l'installation doit être cohérent avec les infrastructures routières en place.

PAYSAGE:

L'impact des installations de méthanisation sur les paysages peut être largement limité par l'enfouissement partiel des infrastructures, le choix de l'emplacement du site et les aménagements.

APPROVISIONNEMENT:

Si les intrants des méthaniseurs sont principalement des effluents d'élevage et des biodéchets, les cultures intermédiaires et les résidus de cultures peuvent constituer un complément utile pour équilibrer les rations. Toutefois, le respect des conditions agro-environnementales de production est une priorité, en production végétale comme en élevage.

SÉCURITÉ DES SITES:

Comme pour toute installation gazière, la règlementation en matière de sécurité est stricte et fait l'objet de contrôles pour limiter les risques.

Que puis-je faire en tant qu'élu.e ?

COMMUNIQUER...

Mettre en place un plan de communication pour une meilleure intégration et acceptation locale.

CONCERTER...

Favoriser les démarches de gouvernance locale et/ou de financement participatif pour augmenter l'appropriation et les chances de réussite des projets (exemple : la collectivité peut s'associer dans un projet par participation au capital).

LOCALISER...

Intégrer la valorisation des biodéchets des collectivités en plus des déchets agricoles (retour au sol de la matière organique dans les exploitations agricoles, renforcement du sens des projets pour les citoyens).

IMPLANTER...

Identifier les ressources et le foncier appropriés.

VALORISER...

Consommer au sein de la collectivité l'énergie renouvelable produite: biométhane, électricité, chaleur et/ou bioGNV.

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] - SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

L'énergie photovoltaïque, comment ça marche ?

Les cellules photovoltaïques intégrées à des panneaux, pouvant être installés sur des bâtiments ou posés au sol, transforment le rayonnement solaire en électricité. L'électricité produite peut être utilisée sur place ou injectée dans le réseau de distribution électrique.

Capacité installée (au 31/12/2022)

16,3 GW

source de 4,2 % de la consommation d'électricité en 2022

Objectifs de capacité

(Planification Pluriannuelle de l'Énergie - PPE pour la métropole à l'horizon 2028)

35,1 à 44 GW

soit plus de 30 % de la puissance totale installée en énergie renouvelable électrique à cette date.

Coût du MWh produit

100 € /MWh

pour les installations sur grandes toitures > 500 kWc (coût complet moyen 2023)

110 € HT/MWh

pour les installations sur ombrières > 500 kWc (coût complet moyen 2023)

pour les centrales au sol

Emplois

12 160

fin 2020 (prévision de 15 610 ETP pour fin 2022)

Enjeux et perspectives

Le solaire photovoltaïque est aujourd'hui l'une des filières de production d'électricité renouvelable les plus compétitives. Elle présente l'avantage d'être rapidement déployable à grande échelle.

- Au niveau international, les nouvelles capacités installées annuellement devraient représenter 630 GW en 2030 (selon l'Agence internationale de l'énergie), contre 183 GW en 2021.
- En Europe, le plan REPowerEU publié en mai 2022 par la Commission européenne fixe l'objectif de doubler la capacité installée par rapport à 2020 et d'atteindre 600 GW d'ici 2030.
- En France, la Programmation pluriannuelle de l'énergie fixe un objectif de 35 à 44 GW d'ici 2028, ce qui nécessite de poursuivre l'accélération du rythme de développement des projets et de leur raccordement au réseau.

Quel intérêt pour mon territoire?

REVENUS FISCAUX

La production d'électricité photovoltaïque apporte des revenus fiscaux aux collectivités.

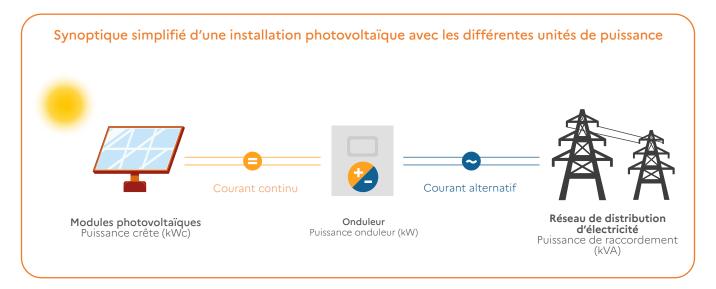
- L'imposition forfaitaire sur les entreprises de réseaux (IFER) pour les installations d'une puissance supérieure à 100 kWc;
- La taxe foncière sur les propriétés bâties (TFPB), pour les installations au sol ou en ombrière;
- La contribution économique territoriale
- La taxe d'aménagement (TA) pour les installations au sol nécessitant une autorisation d'urbanisme.

EMPLOIS LOCAUX

Ils contribuent au développement de filières d'emplois spécifiques et non délocalisables liés notamment à l'installation et à la maintenance.

ÉCONOMIE DE FACTURES

Pour les installations hors du soutien public et par l'intermédiaire d'un contrat d'achat direct d'électricité (ou PPA pour « Power Purchase Agreement ») passé entre la collectivité et un producteur d'électricité ou au sein d'une opération d'autoconsommation collective, la collectivité peut obtenir des tarifs d'électricité concurrentiels et stables sur le long terme.

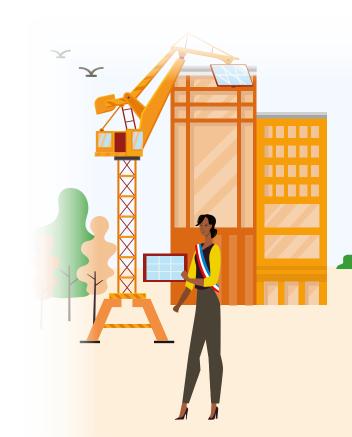

Dans le cas d'une opération d'autoconsommation, la collectivité peut choisir d'autoconsommer une partie de sa production et de réinjecter le surplus sur le réseau public. Elle peut alors bénéficier d'un soutien public (obligation d'achat ou complément de rémunération en fonction de la taille du projet).

La collectivité peut également prendre part à la gouvernance d'un projet photovoltaïque sur son territoire (projet citoyen) et obtenir des retombées économiques provenant de la vente de l'électricité.

L'EFFET PHOTOVOLTAÏQUE

La cellule photovoltaïque, élément de base des modules, est composée d'un matériau semi-conducteur photosensible (souvent du silicium) qui possède la propriété de convertir la lumière du soleil en électricité : c'est l'effet photovoltaïque. Chaque cellule ne générant qu'une petite quantité d'électricité, elles sont assemblées, protégées par différentes couches de matériaux afin de former un module photovoltaïque.

Dans une installation photovoltaïque, le courant continu produit par les modules photovoltaïques est ensuite transformé par un onduleur en courant alternatif afin d'alimenter le réseau public de distribution d'électricité.



UNE TECHNOLOGIE MODULAIRE ET ADAPTABLE

Le photovoltaïque présente l'atout majeur d'exister sous différentes technologies et de pouvoir s'installer de manière variée sur plusieurs types de terrains ou de surfaces. Il peut ainsi s'installer de différentes façons sur l'enveloppe des bâtiments (toitures, façades, verrières, fenêtres, etc.), au sol, sur des ombrières de parking, bénéficier à des exploitations agricoles grâce à l'agrivoltaïsme, sur des structures flottantes, etc. Il existe une variété quasiment infinie d'installations possibles, pour des puissances allant de quelques kW à plusieurs MW.

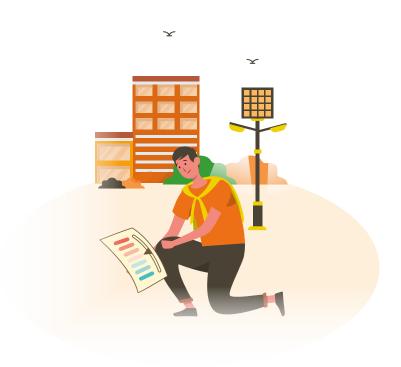
Parmi les implantations les plus courantes :

- Les toitures photovoltaïques, dont le gisement disponible est considérable, avec plus de 350 GW identifiés en France. Elles permettent d'éviter les conflits d'usage et ne portent pas atteinte à la biodiversité.
- Les centrales au sol, que l'on privilégie sur les sols déjà artificialisés ou à faibles enjeux en termes de biodiversité (parkings, friches, délaissés routiers / autoroutiers / ferroviaires, etc.). Ces centrales doivent être développées dans le cadre d'un projet de territoire et en concertation avec toutes les parties prenantes pour permettre à chacun de s'approprier ces infrastructures.
- Les ombrières de parkings, utiles aux consommateurs et qui peuvent être couplées à des bornes de recharge pour véhicules électriques.
- Les installations agrivoltaïques, encore peu répandues mais en plein essor, qui doivent apporter un service à l'installation agricole. Ces installations sont une nouvelle voie de développement du photovoltaïque à condition qu'elles préservent es sols et l'agriculture.

VARIABILITÉ DE LA PRODUCTION :

Les outils de prévision permettent aujourd'hui de prédire la production photovoltaïque à court, moyen et long terme avec une précision similaire à celle des prévisions de la demande électrique du gestionnaire de réseau. Ainsi pris en compte, le photovoltaïque ne perturbe pas les opérations d'équilibrage du réseau. Bien sûr, avec un déploiement massif des énergies renouvelables électriques, cet équilibre deviendra plus difficile à tenir sans dispositions complémentaires.

Des études de l'ADEME sur la modélisation du réseau français métropolitain montrent néanmoins que le développement du photovoltaïque jusqu'à 20 GW réduit le besoin de flexibilité journalière au niveau national, car il permet de contribuer à couvrir la pointe de consommation méridienne. Au-delà, le développement des flexibilités (pilotage de la demande, réseaux intelligents, interconnexions, solutions de stockage, émergence de nouvelles solutions techniques alternatives, etc.) permettra de garantir l'équilibrage en temps réel de la demande et de la production massive des énergies électriques variables, telles que le photovoltaïque.


Les coûts des systèmes photovoltaïques et les coûts d'exploitation ont spectaculairement baissé au début de la décennie 2010. Le coût d'une installation a notamment été divisé par 10 en 10 ans.

BIODIVERSITÉ:

Comme pour toute activité humaine, les centrales photovoltaïques peuvent avoir des incidences sur la biodiversité et les sols lorsqu'elles sont implantées sur des milieux naturels. Elles peuvent notamment modifier les conditions d'accueil de la flore et de la faune sauvage et leurs corridors de migration.

Néanmoins, l'impact des centrales photovoltaïques sur la biodiversité n'a fait l'objet de travaux scientifiques que sur un nombre limité de sites et il est encore difficile d'en généraliser les résultats. Il convient cependant de respecter la hiérarchie de la séquence ERC (« Éviter, Réduire, Compenser") en donnant la priorité à l'évitement, puis à la réduction, la compensation ne venant qu'en dernier ressort.

TERRES RARES:

Les technologies solaires photovoltaïques actuellement commercialisées n'utilisent pas de terres rares. Certaines utilisent des métaux qui peuvent être critiques, comme le tellure, l'indium et l'argent pour les couches minces, ou l'antimoine et l'argent pour la filière silicium. Mais il ne s'agit pas de terres rares.

RECYCLAGE:

Les producteurs de modules photovoltaïques ont d'ores et déjà l'obligation de prévoir leur recyclage en application de la directive européenne sur les déchets d'équipements électriques et électroniques (DEEE). En France, la société SOREN est l'éco-organisme missionné par l'État pour la collecte et le traitement de ces modules en fin de vie. Les procédés actuels permettent de recycler plus de 95 % de la masse des systèmes photovoltaïques, notamment le verre et le cadre en aluminium. Les composants, non recyclables, sont valorisés énergétiquement ou éliminés.

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] -SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

La géothermie de surface, comment ça marche?

La géothermie de surface concerne l'exploitation de la chaleur contenue dans le sous-sol jusqu'à 200 m. À ces profondeurs, la température relativement stable et autour d'une dizaine de degrés Celsius nécessite l'utilisation d'une pompe à chaleur pour valoriser l'énergie thermique du sous-sol.

Objectif de la Planification Pluriannuelle de l'Énergie (PPE) pour la métropole à horizon 2028 (consommation finale) :

7 TWh/an (+ 50 % par rapport à 2020)

Coût du MWh produit (2020)

De 86 et 122 € HT/MWh

(coût complet moyen des pompes à chaleur sur champ de sondes)

95 € HT/MWh

(coût complet moyen des pompes à chaleur sur aquifère superficiel)

0,01 à 0,02 ha/MW_{th} (surface artificialisée)

Emplois

1 470 ETP (2020)

La géothermie de surface (également appelée « géothermie Très Basse Énergie » ou « géothermie assistée par pompe à chaleur ») concerne l'exploitation de l'énergie contenue dans le sous-sol jusqu'à 200 m. À ces profondeurs, la température relativement stable et autour d'une dizaine de degrés Celsius nécessite le recours à une pompe à chaleur pour valoriser l'énergie thermique du sous-sol

La géothermie de surface comprend principalement les installations de pompe à chaleur (PAC) :

- sur eau de nappe souterraine (sur aquifère superficiel);
- sur capteurs enterrés (capteurs horizontaux, sondes géothermiques verticales, échangeurs compacts géothermiques, géostructures énergétiques, etc.).

Les installations de PAC géothermiques couvrent des besoins de chaud (chauffage, eau chaude sanitaire) et de froid / rafraîchissement pour des bâtiments dont la surface varie d'une centaine de mètres carrés à plusieurs dizaines de milliers.

Leur mise en œuvre peut être envisagée en neuf comme en rénovation : habitat individuel et collectif, tertiaire (bureaux, établissements de santé et scolaires, maisons de retraite, bâtiments communaux, hôtellerie, grandes surfaces commerciales), centres aquatiques, secteur agricole (chauffage des serres)...

Typologie de solutions géothermiques de surface Pompe à chaleur sur eau de nappe souterraine Pompe à chaleur sur corbeilles géothermiques Pompe à chaleur sur capteurs enterrés horizontaux Pompe à chaleur sur sondes géothermiques Pompe à chaleur sur sondes géothermiques Pompe à chaleur sur géostructures énergétiques Source : www.geothermies.fr

Enjeux et perspectives

Les solutions de géothermie de surface représentaient moins de 1 % de la consommation finale de chaleur (environ 4,8 TWh de chaleur renouvelable géothermique) en France métropolitaine. Le gisement reste donc largement sous exploité bien que disponible localement 24h/24 sur plus de 85 % du territoire national (source BRGM).

Pour accélérer le développement de la géothermie de surface et profonde, le Gouvernement (avec l'ADEME) a élaboré un plan d'action national comprenant des mesures visant à :

- Améliorer l'accompagnement technique et financier des porteurs de projet ;
- Améliorer notre connaissance du sous-sol pour aider la prise de décision ;
- Simplifier la réglementation pour faciliter et accélérer le montage des projets ;
- Sensibiliser les acteurs locaux notamment par la mise en place d'une animation géothermie régionale;
- Structurer la filière et renforcer sa capacité de production et de forage ;
- Développer l'offre de formations en lien avec la géothermie de surface sur tous les maillons de la chaîne de valeur des opérations.

Quel intérêt pour mon territoire?

EMPLOIS LOCAUX

La géothermie de surface est une filière pourvoyeuse d'emplois dans des domaines et qualifications variés : forages, génie civil, génie thermique (installation de pompe à chaleur et équipements associés), maintenance, etc.

ÉNERGIE LOCALE

La géothermie de surface est une énergie renouvelable et locale. Il faut prioriser son usage dans les zones favorables, en particulier dans les zones verte et orange définies par le cadre réglementaire de la géothermie de minime importance.

Que puis-je faire en tant qu'élu.e?

Créer des conditions favorables d'accompagnement (programmation, planification, animation et relais d'information) et/ou mettre à disposition des outils d'aide à la décision (schéma directeur énergies, cadastre géothermique, etc.) Porter des projets de géothermie sur le patrimoine des communes et à l'échelle des territoires (mise en place de contrats chaleur renouvelable patrimoniaux et/ou territoriaux).

En tant qu'autorité organisatrice du service public de distribution de la chaleur, étudier le développement de réseaux de chaleur et/ ou de froid ou de boucle d'eau tempérée à énergie géothermique.

Valoriser les retours d'expérience auprès d'autres collectivités et entreprises.

USAGES DE LA GÉOTHERMIE DE SURFACE :

Les coût d'investissements pour l'installation de pompe à chaleur géothermiques varient en fonction de la puissance de l'équipement et des propriétés du sous-sol. En raison des coûts liés aux forages, les sommes à investir sont plus élevées que pour les installations fonctionnant avec des énergies traditionnelles (gaz naturel ou fuel) ou que celles des pompes à chaleur aérothermiques. Mais les coûts d'exploitation sont très faibles et stables dans le temps.

L'ensemble assure un retour sur investissement en 4 à 13 ans, les temps les plus courts étant observés dans le secteur collectif et tertiaire dès lors qu'il y a aussi des besoins de froid / rafraîchissement à couvrir. La durée de vie d'un forage est d'au moins 50 ans et celle d'une pompe à chaleur géothermique de plus de 20 ans.

SISMICITÉ:

La géothermie de surface ne présente aucun risque de sismicité.

IMPACT SUR LES NAPPES PHRÉATIQUES:

La géothermie de surface n'a pas d'impact sur les nappes phréatiques et ne les pollue pas.

ENR&R [012221] - GÉOTHERMIE DE SURFACE [012221-1] - RÉCUPÉRATION DE CHALEUR [012221-2] - BOIS ÉNERGIE [012221-3] - GÉOTHERMIE PROFONDE [012221-4] - SOLAIRE THERMIQUE [012221-5] - PHOTOVOLTAÏQUE [012221-6] - ÉOLIEN TERRESTRE [012221-7] - RÉSEAU DE CHALEUR [012221-8] - MÉTHANISATION [012221-9]

Les communes sont des acteurs essentiels à la mise en œuvre de la loi relative à l'accélération de la production d'énergies renouvelables. Elles ont un rôle majeur à jouer dans le développement de ces filières nécessaires à la lutte contre le changement climatique et au renforcement de notre souveraineté énergétique. Ce jeu de fiches présente la diversité des énergies renouvelables à développer, leurs intérêts et les enjeux. Elles visent à contribuer aux débats et à la mise en œuvre des objectifs de planification.

Le réseau de chaleur, comment ça marche?

Un réseau de chaleur est un système de distribution de chaleur produite de façon centralisée et desservant une pluralité d'usagers. Il comprend une ou plusieurs unités de production de chaleur, un réseau de distribution primaire dans lequel la chaleur est transportée par un fluide caloporteur, et un ensemble de sous-stations d'échange, à partir desquelles les bâtiments sont desservis par un réseau de distribution secondaire.

Production 2021

30 TWh

de chaleur distribuée (8,7% du mix de production d'énergies d'origines renouvelables).

Coût du MWh produit 80 € ht/MWh

(prix moyen de la chaleur distribuée)

ETP (1 590 pour travaux, 1 860 pour activité « distribution »)

Objectifs de consommation

Objectif de la Planification Pluriannuelle de l'Énergie (PPE) pour la métropole à horizon 2028 (consommation finale):

de 31 à 36 TWh

Principales sources d'approvisionnement

Géothermie (6 %)

Gaz (35 %) Unités d'incinérations (27 %)

Biomasse (24 %)

Autre (7%)

Chaleur fatale industrielle (1 %)

Les réseaux de chaleur alimentent des bâtiments à partir d'un ou plusieurs moyens de production de chaleur centralisés fonctionnant notamment à l'aide d'énergies renouvelables et de récupération (63 % de l'alimentation):

- Biomasse;
- Géothermie (profonde, de surface, sur eaux de mer, de lac ou usées...);
- Solaire thermique;
- Chaleur fatale issue d'unités d'incinération de déchets, de sites industriels, de data center, etc.

Comme le montre le schéma ci-contre, la chaleur est produite dans une unité de production [1] et transportée à l'aide d'un fluide caloporteur qui circule dans un réseau dit « primaire » [2]. Au pied de chaque bâtiment, un système échangeur [3] fait passer la chaleur du réseau primaire vers un réseau dit « secondaire » [4] qui circule à l'intérieur du bâtiment et vient alimenter des radiateurs pour le chauffage ou les canalisations d'eau chaude sanitaire. Par extension, on associe aux « réseaux de chaleur » les réseaux de froid dédiés au rafraîchissement.

La majorité des réseaux distribue une eau à environ 100° C. En optimisant les besoins de chaleur des bâtiments raccordés (travaux d'efficacité énergétique), cette température peut être abaissée afin de

Principes de fonctionnement d'un réseau de chaleur

Chaufferie Résidence collective Réseau « secondaire » Maisons individuelles

[1]

[3]

[3]

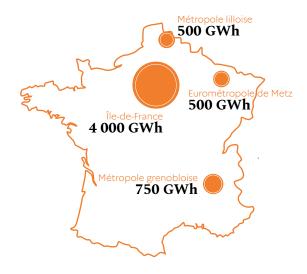
[3]

[3]

Bătiments de services publics Sous-station Canalisations Bureaux

consommer moins de ressources et de mobiliser un panel plus large de moyens de production : géothermie de surface, récupération de chaleur sur eaux usées ou data center, etc. Parmi les modèles efficaces qui ont fait leurs preuves dans les « écoquartiers » figurent ainsi ceux où une boucle d'eau tempérée entre 10 et 30° C est réchauffée au niveau des bâtiments via des pompes à chaleur.

La dimension locale des énergies utilisées est un argument très fort en faveur du développement des réseaux de chaleur et de froid. Utiliser la chaleur produite par une usine et non exploitée jusqu'alors, des nappes géothermiques ou de la biomasse issue de sous-produits de l'activité économique


concourt à s'approprier davantage les ressources et atouts de son territoire.

La loi sur la transition énergétique pour la croissance verte a fixé l'objectif de multiplier par cinq la quantité de chaleur et de froid renouvelables et de récupération livrée par les réseaux d'ici 2030 (référence 2012). Objectif: 39,5 TWh distribués, toutes sources confondues (EnR&R ou fossile). La PPE actuelle fixe un objectif de 31 à 36 TWh EnR&R distribués à horizon 2028.

Les réseaux de chaleur aujourd'hui déployés ont des dimensions très hétérogènes allant de quelques centaines de MWh délivrés par an, à plusieurs millions de MWh alimentant plus de 500 km de réseau (Île-de-France).

Les réseaux constituent également, en tant que tels, une infrastructure de transition énergétique de long terme structurante pour un quartier. Dans cette optique, la loi sur la transition énergétique pour la croissance verte a fixé l'objectif de multiplier par cinq la quantité de chaleur et de froid renouvelables et de récupération livrée par les réseaux d'ici 2030 (référence 2012), ce qui représente un objectif de 39,5 TWh distribués, toutes sources confondues (EnR&R ou fossile). La PPE actuelle fixe un objectif de 31 à 36 TWh EnR&R distribués à horizon 2028. Cet objectif sera révisé dans le cadre des travaux à venir sur la PPE.

Exemples de réseaux de grandes dimensions (GWh délivrés / an)

ÉNERGIE LOCALE ET ÉQUITÉ SOCIALE

Les réseaux de chaleur se verdissent en se substituant essentiellement au gaz. En moyenne, la chaleur distribuée par les réseaux français est produite à 63 % par des EnR&R locales. Le prix des ressources EnR&R étant moins fluctuant que celui du gaz ou de l'électricité, les ré-seaux de chaleur constituent un moyen de donner de la visibilité aux abonnés, dont les bailleurs sociaux, pour mieux maîtriser leur budget. Autre atout, ces réseaux sont soumis à une TVA à 5,5 % dès lors que la chaleur est issue à plus de 50 % de ressources renouvelables. Un moyen de plus pour les collectivités locales de réduire la facture énergétique.

EMPLOIS LOCAUX

Les réseaux de chaleur et de froid contribuent à l'emploi local sur toute la chaîne de valeur, depuis l'installation jusqu'à l'exploitation. On estime à 3 500 le nombre d'ETP concernés. En outre, ces réseaux offrent des débouchés directs et de long-terme aux filières du gaz, de la biomasse, de la géothermie et toute autre moyen de production qui contribuent à son approvisionnement.

ÉCONOMIE DE FACTURE

Le prix des ressources EnR&R est moins fluctuant que celui du gaz ou de l'électricité. Les réseaux de chaleur constituent donc un moyen de donner de la visibilité aux abonnés pour mieux maîtriser leur budget « chauffage ». Autre atout, ces réseaux sont soumis à une TVA à 5,5 % dès lors que la chaleur est issue à plus de 50 % de ressources renouvelables. Un moyen de plus pour les collectivités locales de réduire la facture énergétique.

Que puis-je faire en tant qu'élu.e ?

9

Bien connaître les demandes de chaleur actuelle et future sur son territoire et les réglementations qui visent à les réduire (pour identifier et dimensionner au plus juste les moyens de production).

9

Caractériser les gisements de chaleur EnR et de récupération (gisements géothermiques, usines de valorisation des déchets, etc.) qui permettront d'alimenter le réseau.

3

Identifier le foncier disponible et les travaux d'infrastructures qui pourraient avoir un impact sur le déploiement du réseau (ex : passage de tramway).

4

Anticiper les projets de rénovation et de construction qui faciliteraient le raccordement à un réseau.

6

Valoriser l'opportunité économique pour les usagers, en plus des vertus environnementales.

ÉMISSIONS:

Les idées reçues sur les réseaux de chaleur concernent très souvent celles sur les moyens de production, notamment la biomasse : émissions de particules, approvisionnement...

GESTION DES SERVICES:

La part des EnR&R dans les réseaux de chaleur a doublé depuis 2009. Dépendants moins des énergies fossiles que d'autres vecteurs, les réseaux ont vu leur compétitivité se renforcer après la crise énergétique. Les demandes de raccordement se sont multipliées et la réponse des opérateurs n'a parfois pas satisfait certains demandeurs (délais, montant, etc.).

La création d'une Commission Consultative des Services Publics Locaux (CCSPL) dans les communes de plus de 10 000 habitants est un élément majeur de réponse à ces enjeux. Elle permet d'associer les citoyens à la gestion des services publics locaux.

